
Reading and writing CDMS-
incompatible ASCII

or binary files

Outline

• ASCII input files

• Binary input files

• Writing data to output files

Some grounding

• Python itself, especially via the string module, makes
it really easy to manipulate string, and therefore
ingest ASCII data.

• The struct module, coupled with the Numeric
package allows for some ingestion of strictly binary
files.

Reading text files in Python

• In its simplest form python provides useful tools to
read ASCII data via string manipulation:
>>> f=open(‘file.txt’)
>>> lines=f.readlines()
>>> for ln in lines:
... sp=ln.split()
... print ln, “splits to:”, sp

------------ Example output from above ---------------
“o3, 0.3462, 0.5834” splits to: [“o3”, “0.3462”, “0.5834”]
“no2, 2.4435, 3.4352” splits to: [“no2”, “2.4435”, “3.4352 ”]

ASCII files via contrib package: asciidata

• The contributed asciidata module provides some
simple ASCII file reading functions.

• Imagine a file containing tab_delimited data:
var1 var2
22 44.3
34 48.3

>>> import asciidata
>>> a=asciidata.tab_delimited('tab_del_data.txt')

>>> print a
{'var1': array([22., 34.]), 'var2': array([44.3,

48.3])}

ASCII using VCDAT’s browser module (1)

• The ASCII file reading capabilities of VCDAT can be
accessed from the command line via the “browser”
module.

• For non-formatted data:
browser.gui_ascii.read(text_file ,header=0,

ids=None, shape=None, next='------
',separators=[';',',',':'])

• header: number of lines to skip at the
beginning of the file

• ids: Name(s) to assign to the variables
returned

• shape: Shape(s) to give to each variable read
• next: string separator between each variable
• separators: string separating elements

ASCII using VCDAT’s browser module (2)

• For data in columns:
browser.gui_ascii_cols.read(text_file ,header=0,

cskip=0, cskip_type='columns', axis=0, ids=None,
idrow=0, separators=[';',',', ':'])

• cskip: number of column/character to skip
• cskip_type: what to skip column or character
• axis: 0/1 is the first column to be used as an

axis for the 1D variables
• idrow: 0/1 use the first row to set variable

ids
• ids: name to give to variables returned

ASCII files via contributed package: Scientific (1)

You can read ASCII “Fortran Formatted” files
using the Scientific contributed package:

>>> f = open(ascii_filename, 'r')
>>> # Import the module that does the work.
>>> from Scientific.IO import FortranFormat
>>> # Declare the fortran formats used to create the
>>> # data.
>>> ff1 = FortranFormat.FortranFormat('2i6')
>>> ff2 = FortranFormat.FortranFormat('12i6')

ASCII files via contributed package: Scientific (2)

>>> data_line = f.readline()
>>> mon,yr=FortranFormat.FortranLine(data_line,ff1)
>>> # Now define an array to read the data into.
>>> import Numeric
>>> T_array = Numeric.zeros((14,))
>>> # In the next line you are assigning the values.
>>> T_array[start_index: end_index] = \

FortranFormat.FortranLine(f.readline(), ff2)
>>> # Note:You must have previously defined T_array.
>>> # See tutorial examples for more details.

Reading Binary files

• Fortran code also produce “pure” binary file, for this the
struct module can be really useful

• See http://docs.python.org/lib/module-struct.html for
more details.

• Alternatively you can use the function from VCDAT
inside the “browser” module:
>>> browser.gui_read_Struct.read(file ,format="", \

endian='@', datatype='f', ids=[], shape=[], \
separator=""):

http://docs.python.org/lib/module-struct.html

Reading Binary files

• Or you can use the contributed ‘binaryio’
package:

>>> from binaryio import *
>>> iunit = bincreate('filename')
>>> binwrite(iunit, some_array)
>>> # (the array can span 4 dimensions, or scalars)
>>> binclose(iunit)
>>> iunit = binopen('filename')
>>> y = binread(iunit, n, ...) # (1-4 dimensions)
>>> binclose(iunit)

Self-Describing Binary Files (2)

• More recognised format are:

– GRIB – is handled via the GrADS/GRIB interface,
a slightly convoluted but effective way to get data
into CDAT.

– PCMDI DRS format – not covered here as
relatively little UK usage.

– CDML (Climate Data Markup Language) – the
internal CDAT XML representation that points to
multiple binary files.

dset ^test.grb
index ^test.grb.idx
undef 9.999E+20
title test.grb
* produced by grib2ctl v0.9.12.5p32l
dtype grib 255
options yrev
ydef 181 linear -90.000000 1
xdef 360 linear 0.000000 1.000000
tdef 1 linear 18Z01jan1996 6hr
zdef 21 levels
21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
vars 1
O3hbl 60 203,109,0 ** Ozone mass mixing ratio kg kg**-1

Reading GRIB 1

To read GRIB (regular grids only), use the “grib2ctl.pl”
perl script to generate the control file (“.ctl”).

Example
Control

(*.ctl) file
[produced by
grib2ctl.pl]

grib2ctl.pl is available at:
http://www.cpc.ncep.noaa.gov/products/wesley/grib2ctl.html

http://www.cpc.ncep.noaa.gov/products/wesley/grib2ctl.html

The ‘gribmap’ utility (part of GrADS) is used to create
a small index file that points to the correct sections of
the GRIB file to access the actual data.
Typical usage:
$ grib2ctl.pl afile.grb > afile.ctl
$ gribmap –e –i afile.ctl
Open via the “afile.ctl” file.

Reading GRIB 2

gribmap is available as part of GrADS at:

http://grads.iges.org/grads/

http://grads.iges.org/grads/

Other self-describing formats of interest in the UK

• You can also get support for:

– PP-format – the BADC has developed code for reading the
Met Office proprietary field data format. This should soon be
included in the I/O layer beneath CDMS (known as cdunif –
a C-layer that provides read access to multiple formats, and
write access to NetCDF). Ask for details.

– NASA Ames – a group of ASCII formats developed at NASA
for field experiments and data exchange. Used extensively in
UK atmospheric research. The BADC has developed a
NASA Ames I/O Python package that links to cdms (see:
http://home.badc.rl.ac.uk/astephens/software/nappy).

http://home.badc.rl.ac.uk/astephens/software/nappy

Writing data to files

• Writing ASCII files.

• Writing non-standard binary files.

Writing ASCII files

• Writing ASCII files is largely about your preferences
as a file author:

– Do you want any metadata retained?
– Do you want to follow any standards or make up

your own brand?
– How do you want the data (and/or metadata)

formatted?

Writing ASCII files

• The simple view is to open an ASCII file and write to it:
>>> outfile=open(‘my_output.txt’, ‘w’) # opens file
>>> # Now write header
>>> outfile.write(“Header: CHORDEX34 data\n”)
>>> outfile.write(“Time\tTemp (K)\tWspd (m/s)\n”)
>>> # Get the time steps
>>> times=temp.getTime().asComponentTime()
>>> c=0
>>> while c<len(times): # Write data at each time
... outstring=“%s\t%s\t%s\n” % (times[c], \

temp[c], wspd[c])
... outfile.write(outstring)
... c=c+1
>>> outfile.close()

Writing ASCII files in NASA Ames format (1)

• The BADC has written a package to bridge the gap between the
NASA Ames File format(s) developed in the 1990s for data
exchange in scientific projects.

• nappy – NASA Ames Processing in Python – allows you to
write CDMS variables directly to NASA Ames (some sub-
formats will choke, but most will work!).

• Get nappy (beta-release) at:

http://home.badc.rl.ac.uk/astephens/software/nappy
• Command-line usage:

$ cdms2na.py –i cdmsFile.nc –o naFile.na

http://home.badc.rl.ac.uk/astephens/software/nappy

Writing ASCII files in NASA Ames format (2)

Working with nappy and CDMS:

>>> import nappy,cdms # import modules
>>> # open file
>>> cdmsFile=cdms.open(‘mydatafile.nc’)
>>> # Get variable
>>> cdmsVar=cdmsFile(‘n2o5’)
>>> # Create the NASA Ames builder instance
>>> naBuilder=nappy.CdmsToNABuilder(cmdsVars)
>>> # Write output to NASA Ames file
>>> nappy.openNAFile(“my_file.na”, “w”, \

naBuilder.naDict)

Writing non-standard binary files

• Once again you can use the python struct module to
write more complex binary output files. For simple
binary arrays written to files you can use the built-in
python I/O:
>>> outfile=open(“binary_var.dat”, “wb”)

>>> x=N.array([2,4,6,8,9], 'f')
>>> outfile.write(x)
>>> outfile.close()

• If you have a multi-dimensional variable then you
might need to write each row according to your own
file format design.

• But why not use NetCDF?

	Reading and writing CDMS-incompatible ASCII� or binary files
	Outline
	Some grounding
	Reading text files in Python
	ASCII files via contrib package: asciidata
	ASCII using VCDAT’s browser module (1)
	ASCII using VCDAT’s browser module (2)
	ASCII files via contributed package: Scientific (1)
	ASCII files via contributed package: Scientific (2)
	Reading Binary files
	Reading Binary files
	Self-Describing Binary Files (2)
	Reading GRIB 1
	Other self-describing formats of interest in the UK
	Writing data to files
	Writing ASCII files
	Writing ASCII files
	Writing ASCII files in NASA Ames format (1)
	Writing ASCII files in NASA Ames format (2)
	Writing non-standard binary files

